La estática tiene que ver con el equilibrio de los cuerpos, los cuales deben cumplir dos condiciones; la primera se llama equilibrio de traslación y establece que la sumatoria de fuerzas que actua sibre un cuerpo debe ser igual a cero y la segunda condición establece que la sumatoria de torques respecto a un punto debe ser igual a cero.La mecánica (Griego Μηχανική y de latín mechanìca o arte de construir una máquina) es la rama de la física que estudia y analiza el movimientoy reposo de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. Modernamente la mecánica incluye la evolución de sistemas físicos más generales que los cuerpos másicos. En ese enfoque la mecánica estudia también las ecuaciones de evolución temporal de sistemas físicos como los campos electromagnéticos o los sistemas cuánticos donde propiamente no es correcto hablar de cuerpos físicos.
El conjunto de disciplinas que abarca la mecánica convencional es muy amplio y es posible agruparlas en cuatro bloques principales:
La mecánica es una ciencia perteneciente a la física, ya que los fenómenos que estudia son físicos, por ello está relacionada con lasmatemáticas. Sin embargo, también puede relacionarse con la ingeniería, en un modo menos riguroso. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empíricocomo éstas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.La mecánica clásica está formada por áreas de estudio que van desde la mecánica del sólido rígido y otros sistemas mecánicos con un número finito de grados de libertad, a sistemas como lamecánica de medios continuos (sistemas con infinitos grados de libertad). Existen dos formulaciones diferentes, que difieren en el grado de formalización para los sistemas con un número finito de grados de libertad:
Aplicados al espacio euclídeo tridimensional y a sistemas de referencia inerciales, las tres formulaciones son básicamente equivalentes.
Los supuestos básicos que caracterizan a la mecánica clásica son:
- Predictibilidad teóricamente infinita, matemáticamente si en un determinado instante se conociera (con precisión infinita) las posiciones y velocidades de un sistema finito de N partículas teóricamente pueden ser conocidas las posiciones y velocidades futuras, ya que en principio existen las funciones vectoriales
que proporcionan las posiciones de las partículas en cualquier instante de tiempo. Estas funciones se obtienen de unas ecuaciones generales denominadas ecuaciones de movimiento que se manifiestan de forma diferencial relacionando magnitudes y sus derivadas. Las funciones se obtienen por integración, una vez conocida la naturaleza física del problema y las condiciones iniciales.
Existen otras áreas de la mecánica que cubren diversos campos aunque no tienen carácter global. No forman un núcleo fuerte para considerarse como disciplina:
- Mecánica de medios continuos
- Mecánica estadística
[editar]Mecánica de medios continuos
La mecánica de medios continuos trata de cuerpos materiales extensos deformables y que no pueden ser tratados como sistemas con un número finito de grados de libertad. Esta parte de la mecánica trata a su vez de:
La mecánica de medios continuos usual es una rama de generalización de la mecánica clásica, aunque durante la segunda mitad del siglo XX se desarrollaron forumaciones relativistas de los medios continuos, aunque no existe un análogo cuántico equivalente ya que dicha teoría interpreta los medios continuos en forma de partículas.
[editar]Mecánica estadística
La mecánica estadística trata de sistemas con muchas partículas y que por tanto tienen un número elevado de grados de libertad, al punto que no resulta posible escribir todas las ecuaciones de movimiento involucradas y, en su defecto, trata de resolver aspectos parciales del sistema por métodos estadísticos que dan información útil del comportamiento global del sistema sin especificar qué sucede con cada partícula del sistema. Los resultados obtenidos coinciden con los resultados de la termodinámica. Usa tanto formulaciones de la mecánica hamiltoniana como formulaciones de la teoría de probabilidad. Existen estudios de mecánica estadística basados tanto en la mecánica clásica como en la mecánica cuántica.
[editar]Mecánica relativista
La mecánica relativista o teoría de la relatividad comprende:
- La Teoría de la relatividad especial, que describe adecuadamente el comportamiento clásico de los cuerpos que se mueven a grandes velocidades en un espacio-tiempo plano (no-curvado).
- La Teoría general de la relatividad, que generaliza la anterior describiendo el movimiento en espacios-tiempo curvados, además de englobar una teoría relativista de la gravitación que generaliza la teoría de la gravitación de Newton.
Existen varias propiedades interesantes de la dinámica relativista, entre ellas:
- La fuerza y la aceleración no son en general vectores paralelos en una trayectoria curva, ya que la relación entre la aceleración y la fuerza tangenciales es diferente que la que existe entre la aceleración y fuerza normales. Tampoco la razón entre el módulo de la fuerza y el módulo de la aceleración es constante, ya que en ella aparece el inverso del factor de Lorentz, que es decreciente con la velocidad, llegando a ser nulo a velocidades cercanas a la velocidad de la luz.
- El intervalo de tiempo medido por diferentes observadores en movimiento relativo no coincide, por lo que no existe un tiempo absoluto, y no puede establecerse un presente común a todos los observadores, aunque se mantienen relaciones de causalidad estrictas.
- Otro hecho interesante de la mecánica relativista es que elimina la acción a distancia. Las fuerzas que experimenta una partícula en el campo gravitatorio o electromagnético provocado por otras partículas depende de la posición de las partículas en un instante anterior, siendo el "retraso" en la influencia que ejercen unas partículas sobre otras del orden de la distancia dividida entre la velocidad de la luz:
Sin embargo, a pesar de todas estas diferencias, la mecánica relativista es mucho más similar a la mecánica clásica desde un punto de vista formal, que por ejemplo la mecánica cuántica. La mecánica relativista sigue siendo una teoría estrictamente determinista.
[editar]Mecánica cuántica
La mecánica cuántica trata con sistemas mecánicos de pequeña escala o con energía muy pequeñas (y ocasionalmente sistemas macroscópicos que exhiben cuantización de alguna magnitud física). En esos casos los supuestos de la mecánica clásica no son adecuados. En particular el principio de determinación por el cual el estado futuro del sistema depende por completo del estado actual no parece ser válido, por lo que los sistemas pueden evolucionar en ciertos momentos de manera no determinista (ver postulado IV y colapso de la función de onda), ya que las ecuaciones para la función de onda de la mecánica cuántica no permiten predecir el estado del sistema después de una medida concreta, asunto conocido como problema de la medida. Sin embargo, el determinismo también está presente porque entre dos medidas filtrantes el sistema evoluciona de manera determinista de acuerdo con la ecuación de Schrödinger.
La evolución no determinista y las medidas sobre un sistema, están regidas por un enfoque probabilístico. En mecánica cuántica este enfoque probabilístico, lleva por ejemplo en el enfoque más común renunciar al concepto de trayectoria de una partícula. Peor aún el concepto la interpretación de Copenhague renuncia por completo a la idea de que las partículas ocupen un lugar concreto y determinado en el espacio-tiempo. La estructura interna de algunos sistemas físicos de interés como los átomos o las moléculas sólo pueden ser explicados mediante un tratamiento cuántico, ya que la mecánica clásica hace predicciones sobre dichos sistemas que contradicen la evidencia física. En ese sentido la mecánica cuántica se considera una teoría más exacta o más fundamental que la mecánica clásica que actualmente sólo se considera una simplificación conveniente de la mecánica cuántica para cuerpos macroscópicos.
También existe una mecánica estadística cuántica que incorpora restricciones cuánticas en el tratamiento de los agregados de partículas.La mecánica (o mecánica clásica) es la rama principal de la llamada Física Clásica, dedicada al estudio de los movimientos y estados en que se encuentran los cuerpos. Describe y predice las condiciones de reposo y movimiento debido a la accion de las fuerzas.
Se divide en tres partes:
- Cinemática: Estudia las diferentes clases de movimiento de los cuerpos sin atender a las causas que lo producen.
- Dinámica: Estudia las causas que originan el movimiento de los cuerpos.
- Estática: esta comprendida dentro del estudio de la dinámica y analiza las causas que permiten el equilibrio de los cuerpos.
- Velocidad
- Aceleración
- Cinemática del punto
- Dinámica del punto
- Dinámica de los sistemas de puntos
- Energía
- Trabajo, potencia
- Campos y energía potencial
- Impulso
- Principio de conservación de la cantidad de movimiento
- Principio de conservación de la energia
- Principio de conservación del momento angular
- Descomposición de la energía cinética
- Energía potencial en un campo gravitatorio
- Leyes de Kepler
- Centro de gravedad
- Equilibrio y reposo
- Equilibrio de un sólido rígido
- Equilibrio de un punto en un campo de fuerzas
- Tipos de equilibrio
- Rozamiento
- Rotación de un punto
- Rotación de un sólido
- Importancia del momento en las rotaciones
- Momento angular
- Teorema de Steiner
- Aplicación de la dinámica a la rotación
- Movimiento ondulatorio
- Ondas elásticas
- Ondas longitudinales y ondas transversales
- Ondas estacionarias
- Longitud de onda
- Propiedades generales de las ondas
- Fenómenos de interferencia
- Pulsaciones
- Principio de Huygens
- Reflexión y refracción de las ondas
- Efecto Doppler
- Vibraciones libres y forzadas. Resonancia
- Vibraciones acopladas
|
No hay comentarios.:
Publicar un comentario